Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 135
Filtrar
1.
medRxiv ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38633799

RESUMO

Breast cancer screening is necessary to reduce mortality due to undetected breast cancer. Current methods have limitations, and as a result many women forego regular screening. Magnetic resonance imaging (MRI) can overcome most of these limitations, but access to conventional MRI is not widely available for routine annual screening. Here, we used an MRI scanner operating at ultra-low field (ULF) to image the left breasts of 11 women (mean age, 35 years ±13 years) in the prone position. Three breast radiologists reviewed the imaging and were able to discern the breast outline and distinguish fibroglandular tissue (FGT) from intramammary adipose tissue. Additionally, the expert readers agreed on their assessment of the breast tissue pattern including fatty, scattered FGT, heterogeneous FGT, and extreme FGT. This preliminary work demonstrates that ULF breast MRI is feasible and may be a potential option for comfortable, widely deployable, and low-cost breast cancer diagnosis and screening.

2.
Phys Med Biol ; 69(7)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38412530

RESUMO

Objective.This study addresses radiation-induced toxicity (RIT) challenges in radiotherapy (RT) by developing a personalized treatment planning framework. It leverages patient-specific data and dosimetric information to create an optimization model that limits adverse side effects using constraints learned from historical data.Approach.The study uses the optimization with constraint learning (OCL) framework, incorporating patient-specific factors into the optimization process. It consists of three steps: optimizing the baseline treatment plan using population-wide dosimetric constraints; training a machine learning (ML) model to estimate the patient's RIT for the baseline plan; and adapting the treatment plan to minimize RIT using ML-learned patient-specific constraints. Various predictive models, including classification trees, ensembles of trees, and neural networks, are applied to predict the probability of grade 2+ radiation pneumonitis (RP2+) for non-small cell lung (NSCLC) cancer patients three months post-RT. The methodology is assessed with four high RP2+ risk NSCLC patients, with the goal of optimizing the dose distribution to constrain the RP2+ outcome below a pre-specified threshold. Conventional and OCL-enhanced plans are compared based on dosimetric parameters and predicted RP2+ risk. Sensitivity analysis on risk thresholds and data uncertainty is performed using a toy NSCLC case.Main results.Experiments show the methodology's capacity to directly incorporate all predictive models into RT treatment planning. In the four patients studied, mean lung dose and V20 were reduced by an average of 1.78 Gy and 3.66%, resulting in an average RP2+ risk reduction from 95% to 42%. Notably, this reduction maintains tumor coverage, although in two cases, sparing the lung slightly increased spinal cord max-dose (0.23 and 0.79 Gy).Significance.By integrating patient-specific information into learned constraints, the study significantly reduces adverse side effects like RP2+ without compromising target coverage. This unified framework bridges the gap between predicting toxicities and optimizing treatment plans in personalized RT decision-making.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Lesões por Radiação , Radioterapia de Intensidade Modulada , Humanos , Planejamento da Radioterapia Assistida por Computador/métodos , Carcinoma Pulmonar de Células não Pequenas/patologia , Pulmão/efeitos da radiação , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/patologia , Aprendizado de Máquina , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/métodos
4.
Phys Med Biol ; 69(3)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38157552

RESUMO

Objective.Current radiotherapy guidelines for glioma target volume definition recommend a uniform margin expansion from the gross tumor volume (GTV) to the clinical target volume (CTV), assuming uniform infiltration in the invaded brain tissue. However, glioma cells migrate preferentially along white matter tracts, suggesting that white matter directionality should be considered in an anisotropic CTV expansion. We investigate two models of anisotropic CTV expansion and evaluate their clinical feasibility.Approach.To incorporate white matter directionality into the CTV, a diffusion tensor imaging (DTI) atlas is used. The DTI atlas consists of water diffusion tensors that are first spatially transformed into local tumor resistance tensors, also known as metric tensors, and secondly fed to a CTV expansion algorithm to generate anisotropic CTVs. Two models of spatial transformation are considered in the first step. The first model assumes that tumor cells experience reduced resistance parallel to the white matter fibers. The second model assumes that the anisotropy of tumor cell resistance is proportional to the anisotropy observed in DTI, with an 'anisotropy weighting parameter' controlling the proportionality. The models are evaluated in a cohort of ten brain tumor patients.Main results.To evaluate the sensitivity of the model, a library of model-generated CTVs was computed by varying the resistance and anisotropy parameters. Our results indicate that the resistance coefficient had the most significant effect on the global shape of the CTV expansion by redistributing the target volume from potentially less involved gray matter to white matter tissue. In addition, the anisotropy weighting parameter proved useful in locally increasing CTV expansion in regions characterized by strong tissue directionality, such as near the corpus callosum.Significance.By incorporating anisotropy into the CTV expansion, this study is a step toward an interactive CTV definition that can assist physicians in incorporating neuroanatomy into a clinically optimized CTV.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Imagem de Tensor de Difusão/métodos , Anisotropia , Planejamento da Radioterapia Assistida por Computador/métodos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/patologia , Glioma/patologia , Encéfalo/patologia
5.
Phys Med Biol ; 68(17)2023 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-37463589

RESUMO

Objective. Range uncertainty in proton therapy is an important factor limiting clinical effectiveness. Magnetic resonance imaging (MRI) can measure voxel-wise molecular composition and, when combined with kilovoltage CT (kVCT), accurately determine mean ionization potential (Im), electron density, and stopping power ratio (SPR). We aimed to develop a novel MR-based multimodal method to accurately determine SPR and molecular compositions. This method was evaluated in tissue-mimicking andex vivoporcine phantoms, and in a brain radiotherapy patient.Approach. Four tissue-mimicking phantoms with known compositions, two porcine tissue phantoms, and a brain cancer patient were imaged with kVCT and MRI. Three imaging-based values were determined: SPRCM(CT-based Multimodal), SPRMM(MR-based Multimodal), and SPRstoich(stoichiometric calibration). MRI was used to determine two tissue-specific quantities of the Bethe Bloch equation (Im, electron density) to compute SPRCMand SPRMM. Imaging-based SPRs were compared to measurements for phantoms in a proton beam using a multilayer ionization chamber (SPRMLIC).Main results. Root mean square errors relative to SPRMLICwere 0.0104(0.86%), 0.0046(0.45%), and 0.0142(1.31%) for SPRCM, SPRMM, and SPRstoich, respectively. The largest errors were in bony phantoms, while soft tissue and porcine tissue phantoms had <1% errors across all SPR values. Relative to known physical molecular compositions, imaging-determined compositions differed by approximately ≤10%. In the brain case, the largest differences between SPRstoichand SPRMMwere in bone and high lipids/fat tissue. The magnitudes and trends of these differences matched phantom results.Significance. Our MR-based multimodal method determined molecular compositions and SPR in various tissue-mimicking phantoms with high accuracy, as confirmed with proton beam measurements. This method also revealed significant SPR differences compared to stoichiometric kVCT-only calculation in a clinical case, with the largest differences in bone. These findings support that including MRI in proton therapy treatment planning can improve the accuracy of calculated SPR values and reduce range uncertainties.


Assuntos
Neoplasias Encefálicas , Terapia com Prótons , Animais , Suínos , Prótons , Tomografia Computadorizada por Raios X/métodos , Imagens de Fantasmas , Imageamento por Ressonância Magnética , Calibragem , Planejamento da Radioterapia Assistida por Computador/métodos
6.
Int J Radiat Oncol Biol Phys ; 117(3): 738-749, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37451472

RESUMO

PURPOSE: The manual segmentation of organ structures in radiation oncology treatment planning is a time-consuming and highly skilled task, particularly when treating rare tumors like sacral chordomas. This study evaluates the performance of automated deep learning (DL) models in accurately segmenting the gross tumor volume (GTV) and surrounding muscle structures of sacral chordomas. METHODS AND MATERIALS: An expert radiation oncologist contoured 5 muscle structures (gluteus maximus, gluteus medius, gluteus minimus, paraspinal, piriformis) and sacral chordoma GTV on computed tomography images from 48 patients. We trained 6 DL auto-segmentation models based on 3-dimensional U-Net and residual 3-dimensional U-Net architectures. We then implemented an average and an optimally weighted average ensemble to improve prediction performance. We evaluated algorithms with the average and standard deviation of the volumetric Dice similarity coefficient, surface Dice similarity coefficient with 2- and 3-mm thresholds, and average symmetric surface distance. One independent expert radiation oncologist assessed the clinical viability of the DL contours and determined the necessary amount of editing before they could be used in clinical practice. RESULTS: Quantitatively, the ensembles performed the best across all structures. The optimal ensemble (volumetric Dice similarity coefficient, average symmetric surface distance) was (85.5 ± 6.4, 2.6 ± 0.8; GTV), (94.4 ± 1.5, 1.0 ± 0.4; gluteus maximus), (92.6 ± 0.9, 0.9 ± 0.1; gluteus medius), (85.0 ± 2.7, 1.1 ± 0.3; gluteus minimus), (92.1 ± 1.5, 0.8 ± 0.2; paraspinal), and (78.3 ± 5.7, 1.5 ± 0.6; piriformis). The qualitative evaluation suggested that the best model could reduce the total muscle and tumor delineation time to a 19-minute average. CONCLUSIONS: Our methodology produces expert-level muscle and sacral chordoma tumor segmentation using DL and ensemble modeling. It can substantially augment the streamlining and accuracy of treatment planning and represents a critical step toward automated delineation of the clinical target volume in sarcoma and other disease sites.


Assuntos
Cordoma , Aprendizado Profundo , Humanos , Cordoma/diagnóstico por imagem , Cordoma/radioterapia , Tomografia Computadorizada por Raios X/métodos , Algoritmos , Músculos , Processamento de Imagem Assistida por Computador/métodos
7.
Magn Reson Med ; 90(6): 2388-2399, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37427459

RESUMO

PURPOSE: MR guidance is used during therapy to detect and compensate for lesion motion. T2 -weighted MRI often has a superior lesion contrast in comparison to T1 -weighted real-time imaging. The purpose of this work was to design a fast T2 -weighted sequence capable of simultaneously acquiring two orthogonal slices, enabling real-time tracking of lesions. METHODS: To generate a T2 contrast in two orthogonal slices simultaneously, a sequence (Ortho-SFFP-Echo) was designed that samples the T2 -weighted spin echo (S- ) signal in a TR-interleaved acquisition of two slices. Slice selection and phase-encoding directions are swapped between the slices, leading to a unique set of spin-echo signal conditions. To minimize motion-related signal dephasing, additional flow-compensation strategies are implemented. In both the abdominal breathing phantom and in vivo experiments, a time series was acquired using Ortho-SSFP-Echo. The centroid of the target was tracked in postprocessing steps. RESULTS: In the phantom, the lesion could be identified and delineated in the dynamic images. In the volunteer experiments, the kidney was visualized with a T2 contrast at a temporal resolution of 0.45 s under free-breathing conditions. A respiratory belt demonstrated a strong correlation with the time course of the kidney centroid in the head-foot direction. A hypointense saturation band at the slice overlap did not inhibit lesion tracking in the semi-automatic postprocessing steps. CONCLUSION: The Ortho-SFFP-Echo sequence delivers real-time images with a T2 -weighted contrast in two orthogonal slices. The sequence allows for simultaneous acquisition, which could be beneficial for real-time motion tracking in radiotherapy or interventional MRI.

8.
Lancet Oncol ; 24(6): e245-e254, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37269856

RESUMO

Proton radiotherapy is an advanced treatment option compared with conventional x-ray treatment, delivering much lower doses of radiation to healthy tissues surrounding the tumour. However, proton therapy is currently not widely available. In this Review, we summarise the evolution of proton therapy to date, together with the benefits to patients and society. These developments have led to an exponential growth in the number of hospitals using proton radiotherapy worldwide. However, the gap between the number of patients who should be treated with proton radiotherapy and those who have access to it remains large. We summarise the ongoing research and development that is contributing to closing this gap, including the improvement of treatment efficiency and efficacy, and advances in fixed-beam treatments that do not require an enormously large, heavy, and costly gantry. The ultimate goal of decreasing the size of proton therapy machines to fit into standard treatment rooms appears to be within reach, and we discuss future research and development opportunities to achieve this goal.


Assuntos
Neoplasias , Terapia com Prótons , Humanos , Prótons , Neoplasias/radioterapia , Planejamento da Radioterapia Assistida por Computador , Dosagem Radioterapêutica , Radioterapia
9.
Radiother Oncol ; 184: 109675, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37084884

RESUMO

BACKGROUND AND PURPOSE: Studies have shown large variations in stopping-power ratio (SPR) prediction from computed tomography (CT) across European proton centres. To standardise this process, a step-by-step guide on specifying a Hounsfield look-up table (HLUT) is presented here. MATERIALS AND METHODS: The HLUT specification process is divided into six steps: Phantom setup, CT acquisition, CT number extraction, SPR determination, HLUT specification, and HLUT validation. Appropriate CT phantoms have a head- and body-sized part, with tissue-equivalent inserts in regard to X-ray and proton interactions. CT numbers are extracted from a region-of-interest covering the inner 70% of each insert in-plane and several axial CT slices in scan direction. For optimal HLUT specification, the SPR of phantom inserts is measured in a proton beam and the SPR of tabulated human tissues is computed stoichiometrically at 100 MeV. Including both phantom inserts and tabulated human tissues increases HLUT stability. Piecewise linear regressions are performed between CT numbers and SPRs for four tissue groups (lung, adipose, soft tissue, and bone) and then connected with straight lines. Finally, a thorough but simple validation is performed. RESULTS: The best practices and individual challenges are explained comprehensively for each step. A well-defined strategy for specifying the connection points between the individual line segments of the HLUT is presented. The guide was tested exemplarily on three CT scanners from different vendors, proving its feasibility. CONCLUSION: The presented step-by-step guide for CT-based HLUT specification with recommendations and examples can contribute to reduce inter-centre variations in SPR prediction.


Assuntos
Terapia com Prótons , Humanos , Terapia com Prótons/métodos , Prótons , Consenso , Imagens de Fantasmas , Tomografia Computadorizada por Raios X/métodos , Calibragem
10.
Phys Med Biol ; 68(10)2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-37068488

RESUMO

Online adaptive radiation therapy aims at adapting a patient's treatment plan to their current anatomy to account for inter-fraction variations before daily treatment delivery. As this process needs to be accomplished while the patient is immobilized on the treatment couch, it requires time-efficient adaptive planning methods to generate a quality daily treatment plan rapidly. The conventional planning methods do not meet the time requirement of online adaptive radiation therapy because they often involve excessive human intervention, significantly prolonging the planning phase. This article reviews the planning strategies employed by current commercial online adaptive radiation therapy systems, research on online adaptive planning, and artificial intelligence's potential application to online adaptive planning.


Assuntos
Radioterapia de Intensidade Modulada , Humanos , Radioterapia de Intensidade Modulada/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Dosagem Radioterapêutica , Inteligência Artificial
11.
Radiother Oncol ; 183: 109600, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36889597

RESUMO

BACKGROUND AND PURPOSE: Radiation therapy for glioblastoma (GBM) typically involves large target volumes. The aim of this study was to examine the recurrence pattern of GBM following modern radiochemotherapy according to EORTC guidelines and provide dose and distance information for the choice of optimal target volume margins. MATERIALS AND METHODS: In this study, the recurrences of 97 GBM patients, treated with radiochemotherapy from 2013 to 2017 at the Medical Center- University of Freiburg, Germany were analysed. Dose and distance based metrices were used to derive recurrence patterns. RESULTS: The majority of recurrences (75%) occurred locally within the primary tumor area. Smaller GTVs had a higher rate of distant recurrences. Larger treated volumes did not show a clinical benefit regarding progression free and overall survival. CONCLUSION: The identified recurrence pattern suggests that adjustments or reductions in target volume margins are feasible and could result in similar survival rates, potentially combined with a lower risk of side effects.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/radioterapia , Recidiva Local de Neoplasia/patologia , Planejamento da Radioterapia Assistida por Computador , Quimiorradioterapia , Risco , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/patologia
12.
Med Phys ; 50 Suppl 1: 27-34, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36502491

RESUMO

The purpose of this article is to share the excitement of the science of proton therapy, told by two physicists, who started their career in this area at different times. The authors' journey spans the evolution of proton therapy over the past 30 years, taking the reader from the time when it was an extremely exotic treatment modality until its more common use today. Over this time period, the authors' research and development aimed at an improved understanding of the physical benefits of intensity-modulated proton therapy and arc therapy, treatment planning and optimization to take proton-specific uncertainties into account, and imaging to measure the proton range in the patient. The final section focuses on emerging themes to democratize proton therapy by substantially reducing its size and price, for much greater affordability and global availability of this treatment modality.


Assuntos
Terapia com Prótons , Radioterapia de Intensidade Modulada , Humanos , Terapia com Prótons/métodos , Prótons , Planejamento da Radioterapia Assistida por Computador/métodos , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/métodos
13.
J Appl Clin Med Phys ; 24(1): e13806, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36347055

RESUMO

PURPOSE: This manuscript describes the structure, management and outcomes of a multi-institutional clinical and research medical physics residency program (Harvard Medical Physics Residency Program, or HMPRP) to provide potentially useful information to the centers considering a multi-institutional approach for their training programs. METHODS: Data from the program documents and public records was used to describe HMPRP and obtain statistics about participating faculty, enrolled residents, and graduates. Challenges associated with forming and managing a multi-institutional program and developed solutions for effective coordination between several clinical centers are described. RESULTS: HMPRP was formed in 2009 and was accredited by the Commission on Accreditation of Medical Physics Education Programs (CAMPEP) in 2011. It is a 3-year therapy program, with a dedicated year of research and the 2 years of clinical training at three academic hospitals. A CAMPEP-accredited Certificate Program is embedded in HMPRP to allow enrolled residents to complete a formal didactic training in medical physics if necessary. The clinical training covers the material required by CAMPEP. In addition, training in protons, CyberKnife, MR-linac, and at network locations is included. The clinical training and academic record of the residents is outstanding. All graduates have found employment within clinical medical physics, mostly at large academic centers and graduates had a 100% pass rate at the oral American Board of Radiology exams. On average, three manuscripts per resident are published during residency, and multiple abstracts are presented at conferences. CONCLUSIONS: A multi-institutional medical physics residency program can be successfully formed and managed. With a collaborative administrative structure, the program creates an environment for high-quality clinical training of the residents and high productivity in research. The main advantage of such program is access to a wide variety of resources. The main challenge is creating a structure for efficient management of multiple resources at different locations. This report may provide valuable information to centers considering starting a multi-institutional residency program.


Assuntos
Internato e Residência , Humanos , Estados Unidos , Educação de Pós-Graduação em Medicina , Acreditação , Física Médica/educação , Instalações de Saúde
14.
Med Phys ; 50(1): 410-423, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36354283

RESUMO

PURPOSE: This study demonstrates how a novel probabilistic clinical target volume (CTV) concept-the clinical target distribution (CTD)-can be used to navigate the trade-off between target coverage and organ sparing with a semi-interactive treatment planning approach. METHODS: Two probabilistic treatment planning methods are presented that use tumor probabilities to balance tumor control with organ-at-risk (OAR) sparing. The first method explores OAR dose reduction by systematically discarding x % $x\%$ of CTD voxels with an unfavorable dose-to-probability ratio from the minimum dose coverage objective. The second method sequentially expands the target volume from the GTV edge, calculating the CTD coverage versus OAR sparing trade-off after dosing each expansion. Each planning method leads to estimated levels of tumor control under specific statistical models of tumor infiltration: an independent tumor islets model and contiguous circumferential tumor growth model. The methods are illustrated by creating proton therapy treatment plans for two glioblastoma patients with the clinical goal of sparing the hippocampus and brainstem. For probabilistic plan evaluation, the concept of a dose-expected-volume histogram is introduced, which plots the dose to the expected tumor volume ⟨ v ⟩ $\langle v \rangle$ considering tumor probabilities. RESULTS: Both probabilistic planning approaches generate a library of treatment plans to interactively navigate the planning trade-offs. In the first probabilistic approach, a significant reduction of hippocampus dose could be achieved by excluding merely 1% of CTD voxels without compromising expected tumor control probability (TCP) or CTD coverage: the hippocampus D 2 % $D_{2\%}$ dose reduces with 9.5 and 5.3 Gy for Patient 1 and 2, while the TCP loss remains below 1%. Moreover, discarding up to 10% of the CTD voxels does not significantly diminish the expected CTD dose, even though evaluation with a binary volume suggests poor CTD coverage. In the second probabilistic approach, the expected CTD D ⟨ 98 % ⟩ $D_{\langle 98\%\rangle }$ and TCP depend more strongly on the extent of the high-dose region: the target volume margin cannot be reduced by more than 2 mm if one aims at keeping the expected CTD D ⟨ 98 % ⟩ $D_{\langle 98\%\rangle }$ loss and TCP loss under 1 Gy and 2%, respectively. Therefore, there is less potential for improved OAR sparing without compromising TCP or expected CTD coverage. CONCLUSIONS: This study proposes and implements treatment planning strategies to explore trade-offs using tumor probabilities.


Assuntos
Neoplasias Encefálicas , Planejamento da Radioterapia Assistida por Computador , Humanos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/radioterapia , Modelos Estatísticos , Probabilidade
15.
Phys Med Biol ; 67(20)2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-36162404

RESUMO

Objective. Proton therapy of cancer improves dose conformality to the target and sparing of surrounding healthy tissues compared to conventional photon treatments. However, proton therapy's advantage could be even larger if proton range uncertainties were reduced. Sources of range uncertainties include computed tomography treatment planning images and variations in patient anatomy and setup. To reduce range uncertainties, we have developed a system for real-timein vivorange monitoring. The system is based on spectroscopy of prompt gamma-rays emitted through proton-nuclear interactions during irradiation. We validated the performance of our prompt gamma-ray spectroscopy detector prototype using tissue-mimicking and porcine samples.Approach. Measurements were performed in water, four tissue-mimicking samples (spongiosa, muscle, adipose tissue, and cortical bone), and two porcine samples (liver and brain). A dose of 0.9 Gy was delivered to a target at a depth of 12.5-17.5 cm. Multi-layer ionization chamber measurements were performed to determine stopping power ratios relative to water and ground truth proton ranges. Ground truth elemental compositions were determined using combustion analysis. Proton ranges and elemental compositions measured using prompt gamma-ray spectroscopy were compared to the ground truth.Main results. For all samples, the mean measured range over all pencil-beam spots differed from the ground truth by less than 1.2 mm. The mean standard deviation was 0.9 mm (range: 0.4-1.6 mm). The mean difference between ground truth and measured elemental compositions was 0.06gcm3(range: 0.00gcm3to 0.12gcm3).Significance. We verified the performance of our prompt gamma-ray spectroscopy detector prototype for proton range verification using tissue-mimicking and porcine samples. Measured proton ranges and elemental sample compositions were in good agreement with the ground truth. These measurements confirm the system's reliability for a variety of tissues and bridge the gap between previously-reported experiments and ongoingin vivopatient measurements.


Assuntos
Terapia com Prótons , Animais , Imagens de Fantasmas , Terapia com Prótons/métodos , Prótons , Planejamento da Radioterapia Assistida por Computador/métodos , Reprodutibilidade dos Testes , Análise Espectral , Suínos , Água/química
16.
Phys Med Biol ; 67(18)2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-35947984

RESUMO

Objective. Traditional radiotherapy (RT) treatment planning of non-small cell lung cancer (NSCLC) relies on population-wide estimates of organ tolerance to minimize excess toxicity. The goal of this study is to develop a personalized treatment planning based on patient-specific lung radiosensitivity, by combining machine learning and optimization.Approach. Sixty-nine non-small cell lung cancer patients with baseline and mid-treatment [18]F-fluorodeoxyglucose (FDG)-PET images were retrospectively analyzed. A probabilistic Bayesian networks (BN) model was developed to predict the risk of radiation pneumonitis (RP) at three months post-RT using pre- and mid-treatment FDG information. A patient-specific dose modifying factor (DMF), as a surrogate for lung radiosensitivity, was estimated to personalize the normal tissue toxicity probability (NTCP) model. This personalized NTCP was then integrated into a NTCP-based optimization model for RT adaptation, ensuring tumor coverage and respecting patient-specific lung radiosensitivity. The methodology was employed to adapt the treatment planning of fifteen NSCLC patients.Main results. The magnitude of the BN predicted risks corresponded with the RP severity. Average predicted risk for grade 1-4 RP were 0.18, 0.42, 0.63, and 0.76, respectively (p< 0.001). The proposed model yielded an average area under the receiver-operating characteristic curve (AUROC) of 0.84, outperforming the AUROCs of LKB-NTCP (0.77), and pre-treatment BN (0.79). Average DMF for the radio-tolerant (RP grade = 1) and radiosensitive (RP grade ≥ 2) groups were 0.8 and 1.63,p< 0.01. RT personalization resulted in five dose escalation strategies (average mean tumor dose increase = 6.47 Gy, range = [2.67-17.5]), and ten dose de-escalation (average mean lung dose reduction = 2.98 Gy [0.8-5.4]), corresponding to average NTCP reduction of 15% [4-27].Significance. Personalized FDG-PET-based mid-treatment adaptation of NSCLC RT could significantly lower the RP risk without compromising tumor control. The proposed methodology could help the design of personalized clinical trials for NSCLC patients.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Pneumonite por Radiação , Teorema de Bayes , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Fluordesoxiglucose F18 , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/radioterapia , Aprendizado de Máquina , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Estudos Retrospectivos
17.
Phys Med Biol ; 67(15)2022 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-35817046

RESUMO

Objective.The overarching objective is to make the definition of the clinical target volume (CTV) in radiation oncology less subjective and more scientifically based. The specific objective of this study is to investigate similarities and differences between two methods that model tumor spread beyond the visible gross tumor volume (GTV): (1) the shortest path model, which is the standard method of adding a geometric GTV-CTV margin, and (2) the reaction-diffusion model.Approach.These two models to capture the invisible tumor 'fire front' are defined and compared in mathematical terms. The models are applied to example cases that represent tumor spread in non-uniform and anisotropic media with anatomical barriers.Main results.The two seemingly disparate models bring forth traveling waves that can be associated with the front of tumor growth outward from the GTV. The shape of the fronts is similar for both models. Differences are seen in cases where the diffusive flow is reduced due to anatomical barriers, and in complex spatially non-uniform cases. The diffusion model generally leads to smoother fronts. The smoothness can be controlled with a parameter defined by the ratio of the diffusion coefficient and the proliferation rate.Significance.Defining the CTV has been described as the weakest link of the radiotherapy chain. There are many similarities in the mathematical description and the behavior of the common geometric GTV-CTV expansion method, and the definition of the CTV tumor front via the reaction-diffusion model. Its mechanistic basis and the controllable smoothness make the diffusion model an attractive alternative to the standard GTV-CTV margin model.


Assuntos
Neoplasias , Radioterapia (Especialidade) , Humanos , Neoplasias/diagnóstico por imagem , Neoplasias/radioterapia , Planejamento da Radioterapia Assistida por Computador/métodos , Carga Tumoral
18.
Phys Med Biol ; 67(15)2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35817048

RESUMO

Objective.Soft-tissue sarcoma spreads preferentially along muscle fibers. We explore the utility of deriving muscle fiber orientations from diffusion tensor MRI (DT-MRI) for defining the boundary of the clinical target volume (CTV) in muscle tissue.Approach.We recruited eight healthy volunteers to acquire MR images of the left and right thigh. The imaging session consisted of (a) two MRI spin-echo-based scans, T1- and T2-weighted; (b) a diffusion weighted (DW) spin-echo-based scan using an echo planar acquisition with fat suppression. The thigh muscles were auto-segmented using the convolutional neural network. DT-MRI data were used as a geometry encoding input to solve the anisotropic Eikonal equation with the Hamiltonian Fast-Marching method. The isosurfaces of the solution modeled the CTV boundary.Main results.The auto-segmented muscles of the thigh agreed with manually delineated with the Dice score ranging from 0.8 to 0.94 for different muscles. To validate our method of deriving muscle fiber orientations, we compared anisotropy of the isosurfaces across muscles with different anatomical orientations within a thigh, between muscles in the left and right thighs of each subject, and between different subjects. The fiber orientations were identified reproducibly across all comparisons. We identified two controlling parameters, the distance from the gross tumor volume to the isosurface and the eigenvalues ratio, to tailor the proposed CTV to the satisfaction of the clinician.Significance.Our feasibility study with healthy volunteers shows the promise of using muscle fiber orientations derived from DW MRI data for automated generation of anisotropic CTV boundary in soft tissue sarcoma. Our contribution is significant as it serves as a proof of principle for combining DT-MRI information with tumor spread modeling, in contrast to using moderately informative 2D CT planes for the CTV delineation. Such improvements will positively impact the cancer centers with a small volume of sarcoma patients.


Assuntos
Imagem de Tensor de Difusão , Sarcoma , Imagem de Difusão por Ressonância Magnética/métodos , Imagem de Tensor de Difusão/métodos , Estudos de Viabilidade , Humanos , Fibras Musculares Esqueléticas , Sarcoma/diagnóstico por imagem , Coxa da Perna/diagnóstico por imagem
19.
Med Phys ; 49(7): 4693-4704, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35362163

RESUMO

PURPOSE: In proton therapy, dose distributions are currently often conformed to organs at risk (OARs) using the less sharp dose fall-off at the lateral beam edge to reduce the effects of uncertainties in the in vivo proton range. However, range uncertainty reductions may make greater use of the sharper dose fall-off at the distal beam edge feasible, potentially improving OAR sparing. We quantified the benefits of such novel beam arrangements. METHODS: For each of 10 brain or skull base cases, five treatment plans robust to 2 mm setup and 0%-4% range uncertainty were created for the traditional clinical beam arrangement and a novel beam arrangement making greater use of the distal beam edge to conform the dose distribution to the brainstem. Metrics including the brainstem normal tissue complication probability (NTCP) with the endpoint of necrosis were determined for all plans and all setup and range uncertainty scenarios. RESULTS: For the traditional beam arrangement, reducing the range uncertainty from the current level of approximately 4% to a potentially achievable level of 1% reduced the brainstem NTCP by up to 0.9 percentage points in the nominal and up to 1.5 percentage points in the worst-case scenario. Switching to the novel beam arrangement at 1% range uncertainty improved these values by a factor of 2, that is, to 1.8 percentage points and 3.2 percentage points, respectively. The novel beam arrangement achieved a lower brainstem NTCP in all cases starting at a range uncertainty of 2%. CONCLUSION: The benefits of novel beam arrangements may be of the same magnitude or even exceed the direct benefits of range uncertainty reductions. Indirect effects may therefore contribute markedly to the benefits of reducing proton range uncertainties.


Assuntos
Terapia com Prótons , Radioterapia de Intensidade Modulada , Estudos de Viabilidade , Órgãos em Risco , Prótons , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Incerteza
20.
Sarcoma ; 2022: 5540615, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35345672

RESUMO

Background: External beam radiation therapy (RT) for retroperitoneal sarcoma often requires treatment of large target volumes close to critical normal tissues. Radiation may be limited by adjacent organs at risk (OAR). Intensity-modulated radiation therapy has been shown to improve target coverage and reduce doses to OAR. Objectives: To compare target coverage and dose to OAR with 3D conformal proton therapy (3D CPT), intensity-modulated proton therapy (IMPT), and intensity-modulated photon therapy (IMXT). Methods: We performed a comparative study of treatment plans with 3D CPT, IMPT, and IMXT for ten patients with retroperitoneal sarcomas. RT was delivered to 50.4 Gy to the clinical target volume (CTV), the structures considered at risk for microscopic disease. Results: CTVs ranged from 74 to 357 cc (mean 188 cc). Dose conformity was improved with IMPT, while 3D CPT provided better dose homogeneity. Mean dose to the liver, small bowel, and stomach was reduced with IMPT compared with 3D CPT or IMXT. Conclusions: IMPT, 3D CPT, and IMXT provide excellent target coverage for retroperitoneal sarcomas. OAR dose is lower with IMPT and 3D CPT, and IMPT achieves the closest conformity. These techniques offer the opportunity for further dose escalation to areas with positive margins.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...